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Abstract

The objective of this investigation has been to develop an algo-

rithm (or algorithnm) for the improvement of the accuracy and ef-

ficiency of the computer fluid dynamics (CFD) models to study the

fundmum_al physic, of combustion chamber flows, which ate neees-

seat ultimately for the design of propulsion systems such as SSME

and ST}dE. During this three year study (May 19, 1989 - Mary 18,

1992), a unique algorithm was developed for all speed flows. This

newly developed algorithm basically consists of two pressure-based

algorithnm (i.e. PISOC and MFICE). This PISOC is a non-iterative
scheme and the FICE is an iterative scheme where PISOC has the

characteristic advantages on low and high speed flows and the modi-

fied FICE has shown its efficiency and accuracy to compute the flows

in the transonic region. A new algorithm is born _ a combination

of these two algorithms.

This newly developed algorithm has general application in both

time-accurate and steady state flows, and also was tested extensively

for various flow conditions, such as turbulent flows, chemically react-

ing flows, and muitiphase flows. A list of publications and doctoral

dissertations resulting from this effort is provided in Appendix 1.

1 CURB NT NUMERICAL METHODS

FOR COMPRESSIBLE AND INCOM-

PRESSIBLE FLOWS

The objective of this study is to improve the accuracy and efficiency of

numerics] simulation of combustion chamber flows for better understand-

ing of the physics of these complicated flow conditions. To achieve this

objective_ a three year study has been initiated to develop an algorithm

(or algorithms) for incorporation of complex physical phenomena such as

turbulence, compressibility, chemistry sad multiphsse eiFects into exist-

ing CFD codes. This report summarizes the achievements of developing

a unique algorithm during the last three years. Two pressure-based also-

rithms have been identified and extensively tested. In the following, we will

describe the methodology and testing results.



The unsteady compressible Navier-Stokes (N-S) equations are a mixed

set of hyperbolic-parabolic partial differentia] equations (PDE's) while the

unsteady incompressible N-S equations are s mixed set of elliptic-parabolic

PDE's. Trmiitionaliy, different numerical techniques have been used to

solve the N-S equations in the compressible and incompressible flow regimes.

If the unsteady terms are dropped from the equation set for compressible

flows, the resulting equations become a mixed set of hyperbolic-elliptic

equations which are difficult to solve because of the differences in numeri-

cal techniques required for hyperbolic and elliptic type equations. Conse-

quently, nearly all successful solutions of the compressible N-S equations

have employed the unsteady form of the governing equations. This strategy

will also be adopted in this study for the developed algorithm to obtain a

more general application in both time-accurate transient and steady

state applications. With this approach, the steady state solution is ob-

tained by marching the solution in time until convergence is achieved.

1.1 Density-Based Methods

To date, numerical methods utili_,.ing the primitive variables: density, pres-

sure and velocities (in contrast to stream function-vorticity formulation)

for solving the unsteady N-S equation, can be largely classified into two

schemes: density-velocity scheme and pressure-velocity scheme. Most den-

sity-velocity methods have their origins in external aerodynamics problems.

In these problems, it is natural to chores density ss a primary dependent

variable for the continuity equation, wheresa the pressure is calculated from

the equation of state.

For mint density-based methods the equations governing continuity, mo-

mentum, energy and other scalars are solved in a coupled manner. For

inviscid flow calculations, explicit methods [1] are often used for simplic-

ity and storage considerations. However, the explicit methods suffer from

the limitation of small time steps due to stability requirements, and their

application to viscous flow problems is costly. Thua implicit methods are

employed for meat of the compressible viscous flow calculations. The most

widely used implicit schemes for viscous flows are the methods of Beam

and W_ [2], Briley and McDonald [3] and M_C, ormack [4]. Since the

governing equations are solved in s coupled manner, the characteristics of



the equation system are easily obtained. The fluxes at cell faces can be

calculated by the so called flux-vector splitting techniques or by solving the

Rieman problem. The advantage of this approach is that the jump (dis-

continuity) conditions are satis/ied, therefore good results for discontinuous

problems, such ss flows with shocks, are expected. One approach, using

the flux-vector splitting techniques, is the Stager and Warming [5] method,

in which the flux vector F(U) is split into two parts, F + and F- such

that all the eigenvalues of _ are non-negative, and the eigenvalues

are non-positive. The spatial derivatives of F + are bsckwsrd differenced

and that of F- are forward differenced. The method involving solutions

of the Riemsn problem was originally proposed by Oodunov [6]. Since an

exact solution of the Riemsn problem is expensive and unnecessary, several

flux-difference split schemes have been developed, for example by Colella

[7], Dukowics [8], and Roe [9], for which the exact solution of the Rieman

problem is replaced by an approximate solution. Since the use of central

di_erencing for convective terms st high Reynolds numbers resulted in spa,-

tial oscillations in the early study, these oscillation are suppressed now by

adding artificial damping, usually fourth-order damping terms are used by

density-based methods. In the last few years, signi_csnt progress has been

made in the high resolution numerical schemes based on the Total Vari-

ation Diminishing (TVD) prindple, introduced by Harten [10] to develop

oscillation-free schemes. The TVD schemes are very robust for transient

problems and shocks capturing (11]. Further details of these schemes csn

be found in the recent book by Hirsh [12].

Although the density-based coupling schemes have been successfully ap-

plied to compressible flows, the methods have s disadvantage when in the-

limit the incompressible flow is approached, and the linkage between pres--

sure and density weskens in the low Mach number range [13]. In fact, Msch

number sero constitutes a singularity in the compressible form of the equs-

tions. Any tiny disturbances of density are enough to destroy the stability

of solution in the low Msch number regime. Numerical experiments [14}

con/irmed the low Msch number inefficiency and instability of the density

based methods. To avoid such a problem, a "pseudo n (artilicial) compreu_

ibility term can be added into the continuity equation (15, 16]. This new

parameter, caUed "pseudo", should speed its use. As a result, the conver_

gence rate highly depends on the choice of this value. This method is not



ei_cient for unsteady simulations since many inner iterations are required

to obtain divergence free solutions at each time step. Many existing meth-

ods, developed specifically for incompressible flows, surmount this problem

by treath_ the pressure as a primary dependent variable. These pressure-

velocity coupling schemes are equally valid for compressible flows.

1.2 Pressure-Based Methods

The earliest development of primitive variable schemes based on pressure-

velocity coupling was the semi-implicit transient Marker-and-Cell method

(MAC) [17] and Simpl/fied MAC [18] by the Los Alamos group. Since there

is no explicit governing equation for the pressure field, these methods ba-

sically derive a working pressure equation through joint manipulation of

the momentum and contintdty equations. Existing pressure-velocity cou-

pling methods can be divided into two categories, namely, semi-impl/cit

and full impllcit schemes. Because of their reliance on explicit differenc-

ing, semi-implicit schemes have a disadvantage in time-dependent compu-

tations, since the time-step size, necessary to maintain stability of such

methods may drastically impair the ei_ciency of the algorithm especially

when applied to the calculation of steady-state flows. Implicit methods on

the other hand, do not suffer from time step restrictions.

The most popular method using pressure-velocity coupling schemes for

solvins incompressible flows is the SIMPLE algorithm of Patankar and

Spaldins [19] and its variants: SIMPLER by Patsnkar [20], SIMPLEC by

Van Doormaal and Raithby [21], SIMPLEX by Van Doormaal and Raithby

[22] and SIMPLEST by Sha [23]. The advantages gained by the implicit

di_eren_ of the SIMPLE method, which is based on a pressure correction

procedure, are offset by the use of an iteration, which makes time depen-

dent calculations rather expensive as iteration is required at each time step.

The SIMPLE algorithms can be extended to handle compressible flow cal-

culations as shown by Van Doormaal e_ a[. [24]. This method accounts for

additional variations in density through an equation of state based pressure

-density coupled correction scheme. Although applicable to a wide variety

of flows, there are certain flow situations in which this method is inappro-

priate and fails to yield acceptable results. Recognized and addressed by

Gosman and Watkins [25], these flows are the ones in which the tempera-



ture is strongly coupled with the pressure and velocity, such as chem/cal/y

reacting flows.

Another method for handling the pressure-velocity coupling of implicitly

differenced fluid flow equations is the non-iterative PISO algorithm of Isss

[26]. This method splits the process of the solution into s series of predictor

and corrector steps that, at each step, e_ simplified set of equations in terms

of a single unknown veriable is obtained. The PISO algorithm has exhibited

x very efficient and robust nature when applied to s variety of flows as shown

by Benodekar [27] and Issa [28].

The operator splitting technique can be described briefly as follows: We

first describe the N-S in a fully implicit way such that the N-S equation

_(_,_) + (p_,,uj)= az, + ----_J + s, (1)_zj

becomes

1 f, ,.+_ (pu_),,/

where A is the discrete _, u_ +1, p_+l denote i a' grid point values at (n+l) _

time level. H( ) is a linearized convection diffusion operator. H( ) in

principle is s time-dependent operator in which H(u n+t) represents a fully

implicit formulation while H(u ") represents s fully explicit formulation.

The starting point of the operator-splitting technique in this research is

the one originally proposed by Ins [26], namely, the Pressure Implicit by

Splitting of Operator (PISO) algorithm. In this algorithm, eac.h marching

time step is further divided into a sequence of predictor-corrector steps. In

the first momentum predictor step the operator is split in such s way,

H(_7) = A._,Z+ a,(_,) (3)

in which Ao is the diagonal pert of the original matrix operator H. u_

is the first predictor velocity value (unknown). The implicit momentum

predictor step then can be rewritten as:

(_'tl p'*u Z -- Ht(uZ) - alp" + Si + --6t (4)



Note that the pressure value used in equation (4) is the "old" value

(time step n). Thus, the solution of (4) will not satisfy continuity at time

step n -t- I.

Corrector steps are devised to derive a pressure governing equation,

driving the velocity field to satisfy continuity. This is done by splitting the

operator for first correcting the velocity field such that

H(u," ) - Aou," + H,(u,)

thus the discretized momentum equation becomes

(5)

_t p'u;" = _,(u;) - _,p" + s, + P"_?_--D (6)

Note that equation (6) now has two unknowns: u7 ° and p'.

By subtracting equation (4) from (6), we obtain a momentum increment

equation

p',_'" - f,_7 = - g _ A,(p- _ f) (7)
By taking divergence of this equation sad involving continuity con-

straints, a pressure increment equation is obtained

I p_n')-lA, } @(_Tn)'l(p°--pn)-'Ai(pnU_) (8)

where @() is the equation of state linking pressure and density. This one

-step corrector scheme resembles the SIMPLE algorithm, if iterations be-

tween llrst predictor and first ¢orrector were executed. To reduce this

iteration procedure, a second corrector, based on further operator-splitting

for second corrector velocity field, is used:

H(uT"" ) _ A_P"uT.. + S'(uT) (9)
p"

In this operation, the momentum and continuity then are simultane-

ously s&_. Summaries of the PISO procedure are listed in Table 1.

Here, we compare the PISO algorithm to another established pressure

b,_ed method. The newly developed FICE scheme of Hu and Wu [29) baz_t

on the earlier ICE scheme [30] is chosen. However, a modification of the



FICE schemein parallel with the operator-splltting idea is developedas
part of the researcheffort of this task in section 2. This newly developed

algorithm is called MFICE. In the FICE scheme, the discretised momentum

equation is written as

(1._ + A_)-_,i_'+l = Ht(_'_)- A_p '_ + S_ + p"u'_i_____ (10)

The main difference between this equation and equation (4) is the split

operator HI(). FICE used an explicit scheme for the predictor step while

the PISO used an implicit scheme. Another difference lles in the way the

pressm_ equation is set up. Instead of deriving a pressure-correction equa-

tion, the FICE scheme directly takes divergence of the momentum equation

(in contrast to the momentum increment equation) sad invoking the con-

tinuity equation. This scheme is essentially a one-step predictor-corrector

scheme and requires iteration.

1.3 Relationship Between Pressure and Density Bas_,-

Methods

Recently, the PISO algorithm has been rearranged in a vector formulation

for direct comparison with other density based algorithms. The findings

[31] indicate that the PISO algorithm alters the sonic speed so that the

equations stay well conditioned in the limit of low Msch numbers. In par-

ticulsr, the PISO algorithms is very closely related to the preconditioning

algorithm developed by the Penn State group [32]. The philosophy of the

preconditioning technique is to cause the density-based method to appear:

pressure-based at low speeds but to remain density-based at high speeds.

Originally, preconditioning methods were used as a means of circumventing

the disparity in the eigen values st low Mach numbers. This technique al-

ters the time derivatives of the equation of motion with the acoustic speed

scaled down to the level of the fluid velocity, such that the local CFL num-

ber (which controls the marching time-steps) is approximately of the same

order for viscous sad invlscid terms. The extensions of the predicting tech-

nique have recently been carried out for viscous chemical reacting flows

involving chemical source terms. However, how preconditioning may be

applied to improve convergence and robustness in the calculation of multi-



phaseand turbulent flow (involving higher-order turbulent models) remains
to be seen.

2 NEW

FOR

ON

NUMERICAL FORMULATIONS

ALL-SPEED REGIMES BASED

PRESSURE METHODS

2.1 Formulation of PISOC and MFICE

The basic ideas of the operator-splitting technique have been described

in 1.2. The algorithm used was the PIS0 algorithm first proposed by

Issa [26]. The major difference between the PISO and the previously used

pressure.based schemes, such as the SIMPLE-fsmily schemes, is the use

of momentum per unit volume as the resulting variable of the momentum

equations, rather than velocity (which is momentum per unit mass). The

advantages are twofold. First, the time-dependent equations give directly

the change in a property per unit volume, whereas the SIMPLE pressure

correction algorithm must divide the time change by density in order to

calculate the new velocity. Second, the change in momentum can be re-

interpreted as a change in mass flux. This gives a linkage between pressure

and mass flux; the mass conservation equation then only contains density in

the time-dependent term. The pressure correction equations thus obtained

become the momentum correction equation:

1 A_) -1f_;- _ p-_; = - _ p_ [_,(f - f)] (11)

thus the pressure increment equation is obtained by taking divergence of

(11) and involving the continuity equation

where#(f ,T") = f /f

(12)

Note that the pressure-momentum linkage equation as described in (12)

remains essentially elliptic at all flow speeds and cannot mimic the hyper-

bolic behavior of the system of equations, when flows are transonic and



supersonic. To remedy this defect, we propose to split the operator, con-

sistent with the compressibilit_ effect of the density correction, such that

the first momentum corrector step becomes:

fu?

the operator splitting procedure used is

(13)

o*
H(u_') H'(,_,)+ Ao_:_" (14)

This new algorithm is named PISOC (Consistent) due to its consistent

operator splitting procedure. Compared to the original PISO algorithm

where

H(_;') = H'(_Z) + Ao_,,',"

the new momentum correction equation becomes

(15)

p" /

where pl = p" - p", and the pressure correction equation is

(16)

- -;-:.,,,#(p - v") = _(p",,;') (17)

The capability to solve compressible flow with shocks by the PISOG

algorithm is achieved by the convection incremental pressure term, the

second term in the left hand side of equation (17). This term properly

takes into account the hyperbolic nature of supersonic flows.

The PISOC alsorithm is a pressure correction method (PCM) in which

the pressure correction equations axe solved. On the other hmxd, the

MFICE scheme is s pressure substitute method (PSM) in which the Poisson

pressure equations are directly solved in place of the continuity equation.

In the MFICE algorithm, the equation set is discretised ss



1 . n+l
_(p _ p_)+ A,(p,,O_+_= 0 (18)

(P'M_)n'l'l -- I(p'u'i)n -- ao(p'u,,) n+l = ,_F/('l[/,_ "t'l ) -- A-iP n't'l + 5? +1 (19)
6t

To solve the fully implicit equations (18), (19), the MFICE scheme

employs the iterative solution procedure ms shown below:

i. k = 1,(p,p, pul) k = (p, pu_) '_

ii. substituting (19) into (18) (Mso via equation of state p = pRT), we

obtsin the pressure equation in the form

which yields pk+1 and thus solvesfor (pu_)h+1 by

(20)

(I _ A,,)(p_)h+ _ 1 ,_= _-/(_,,) + w(_f) + s,_ (21)

ill. if If +1 P'_ l< e then • _,,+i-" (p,p, pu 0 = (p,p, pu_) k=l goes to the next

time step or else (p,p, pul) h = (p,p, pu_) k+l, k = k + 1, goes to ii)

This MFICE a/gorithm has the following characteristics:

The MFICE, as compared to itsoriginal FICE, holds now the operator-

splitting (i.e, write H = Ao + HI) scheme to enhance the convergence

of the iteration procedure.

We may write H in the form H,,, or Ha., where the former is a ]inearized

operator (depending on the n a' time level results), and the latter is in

a non-llnear form, which is updated during the/¢ _/¢ + 1 iteration.

In MFICE Hh is used.

i0



s The technique of introducing convection terms to the pressure equs-

tion, to mimic the hyperbolic property when supersonic phenomena

are involved, does not have much significance to MFICE, since the

term ap/_ in the continuity equation (1) is retained, which recovers ,

the hyperbolic property automatically. Therefore, MFICE does not

use this technique.

2.2 Boundary Conditions

The implementation of boundary conditions is one of the most complex

problems in computational fluid dynamics. The difficulties are due to var-

ious pouibilities of combining different boundary conditions in a general

CFD problem. In addition a few special results are known about the

mathematical representation of boundary conditions to ensure existence

or uniqueness of the solution. For these reasons a discussion of general

boundary conditions of CFD problems is not undertaken here. In this sec-

tion only the most frequently encountered boundary conditions in fluid flow

problems and the treatment, necessary to incorporate them in the discre-

tised equations, are described.

2.2.1 Inlet Boundary Condition

At the inlet boundary, the values of all dependent variables are normally

known. These are usually obtained by M_ence to experimental data, anal-

ysis or estimation. These values can be substituted into the discretization

equations for the boundary control volumes and thus nothing special needs

to be done. Since the inlet boundary mass fluxes are generally known in in-

compressible flows (here only the velocity component normal to the bound-

sry is of concern), all intermediate values of u_ st the boundary, namely,

u_" and u_", are set to the given boundary value. This is equivalent to

prescribing zero gradient boundary conditions for the pressure correction

equation. It is readily implemented by setting the coe/_cient of equation

for the boundary node to _ero. The same treatment also applies for outlet,

symmetry, and wall boundaries. The pressure at the boundary is obtained

by linear extrapolation from inner points.

In contrast to incompressible flows, the pressure or stagnation pres-

11



sure is often fixed at inlet boundary for compressible flows. The number

of variables that can be specified at the inflow boundary depends on the

number of incoming flow characteristics. For subsonic inflow, this requires

the specification of three variables. Whereas, if the inflow is supersonic, all

variables must be fixed. For the case of subsonic inflow there is a consider-

able choice as to which variables should be specified. For example, both the

velocity cbmponents and the pressure may be specified, or both the velocity

component and temperature may be specified. In internal flows, it may be

convenient to specify the stagnation temperature, stagnation pressure, and

transverse component of velocity or the inlet flow angles. Other variables

that are required at the inflow boundary are obtained by extrapolation

from the interior. If the pressure at the boundary is specified, then p" - p"

and p'" -p" are set to zero, which serves as the boundary condition for

the pressure-increment equations. The norms/velocities st the boundary

are updated by the continuity equation, and the tangential velocities are

obtained by linear extrapolation. If the stagnation pressure at boundea7

is specified, the velocities are obtained by the same procedure described

above. From this velocity, the given stagnation pressure and the stagna-

tion temperature, static pressure And temperature can be calculated. So, it

is basically the same u the specification of a pressure boundary condition.

2.2.2 Outlet Boundary' Condition

For incompressible flows the value of the dependent variables are gener-

ally unknown. The outlet boundary should be placed sufficiently far down-

stream from the region of interest. As a result, any inaccuracy in estim&ting

the outlet conditions will not propagate far upstream. In this study two

conditions are used to get velocities at the outlet. The first one is that the

velodty profile at the outlet is similar to the velocity at the first internal

point from the outlet. The second one is that the overall continuity must

be satisfied that is, the sum of outlet mass fluxes equals the sum of inlet

mus fluxes.

U ° "- _It ! and V ° "- _V I (22)

12



o I,O

= E (24)
1,0

where a is a scale constant. 0 denotes values st the outlet. I denotes the

first interior point from the outlet. When the new velocity is obtained st

internal points, equstion (24) is employed to get a, then the velocities st the

outlet are updated by using equation (23). The other scalar variables are

obtained by setting all coefficients corresponding to the outlet boundary

nodes to zero. It is, therefore, sppropriste to evaluate outlet boundary

values by extrapolation from upstream.

If flow is compressible, the number of vs_-isbles that can be specified

is similar to the inlet boundary. It is equal to the number of incoming

characteristics. For s subsonic outflow, this requires specification of one

boundary condition. The variable that is usually fixed is the static pressure.

It is called the back pressure. The values of other variables are obtained

by extrapolation from the interior domain. For supersonic outflow, all the

var/sbl_ at the outlet are determined by upwind information, no boundary

conditions should be specified, and all values of variables st the outlet are

obtained by extrspolstion.

2.2.8 Symmetry" Boundary Condition

The symmetry boundsa7 condition implies two contents, no flow crosses

the symmetry line (or plane), and diffusive flux st the direction normal to

the symmetry line is _.ero. The first one can be satisfied by setting the

contrsvariant velocity (velocity normal to the symmetry llne) to zero. The

second one can be met by setting all the coefficients corresponding to the

symmetry boundary points to zero. The values of variables st the symmetry

boundary are obtained by _ - 0,

(25)

1.3



2.2.4 Wall Boundary Condition

For incompressible flow the no-slip condition is applied. The velocity of the

fluid st the wall equals the velocity of the wall. These conditions axe easy to

impose. Because the velocity st the wall is known, the implementation of

wall boundary conditions is the same as inlet boundary conditions. There

axe two types of boundary conditions: the temperature and other scalars,

fixed wall value sad fixed wall flux.

For compressible flow there are two possibilities of wall boundary con-

clition, no-slip wall and slip wall. The no-slip wall is for viscous compress-

ible flows. The implementstion is the same as for the incompressible wall

boundary. The slip wall is for inviscid compressible flows. This condition

is imposed by setting the normal component of contravarisnt velocity to

zero. The velocity at the boundary is obtained by a projection of interior

points along the wall.

3 EXTENSION OF THE NEW METHOD

3.1 Turbulent Flows

Implementation of a two-equation model (k - _), to include turbulence ef-

fects into this combined algorithm, has been developed for subsonic flows.

In the following, we discuss the new method sad the implementation pro-

CedtlL1"_.

The equations of fluid flows are written in general form:

+ _(_,) = o (26)Ot

_(_,) + : + a--_,_-u+ s, (27)

In the equation above p is the density, ul the velocity components, p is

the pressure, Si axe body forces sad w'ij are the components of a deviatoric

stress tensor:

"r_i-/_LOxj + Ox_ 3O-'_h J] (28)

14



As mentioned in the previous section, the PISOC algorithm is a pres-

sure correction method (PCM) in which the pressure correction equations

are solved. On the other hand, the MFICE scheme is a pressure substitute

method (PSM) in which the Poisson pressure equation is directly solved in

place of the continuity equation. The key issue is to include the momen-

turn source calculations and to ensure continuity (Eq. (26)) for a prescribed

number of corrector steps on a pressure equation. Here we seek a sprit op-

erator in a time domain such that the splitting error of the finite-difference

form of Eq. (2) is less than the truncation error of the temporal finite

_ifferencing.

The splitting procedure described above is extended for solving other

scalar transport equations. In simulating turbulent flows, the well-known

k - _ mode/of turbulence requires solving transport equations for the tur-

bulence kinetic energy, k, and its rate of dissipation e. These equations are

strongly coupled, especially through the source terms. The splitting pro-

cedure presented here does away with iterations, however, a non-iterative

scheme must also be developed to deal with the other equations, such that

the accuracy and stability of the overall scheme are preserved. It is often

the case that the poor resolution of these scalar fields (including the species

equation for chemical-reacting flows) undermines the integrity of the overall

solution procedure.

The/¢ - ¢ model in differential form is:

and

(29)

0 0 s.) (30)

where

and

Sk =G- pe (31)

(32)

15



and

G = -ud uflaa_,is the generation term. The eddy diffusioncoefficients

_t_and p, are related to eddy viscosityby

fLt

k2
resulting in the eddy viscosity #t = C.p-- (33)

£

The splitting procedure used in this study is to reconstruct the source

terms such that

S_ = G p2 ,.k_(7,.. (34)
#t

and

S. -- CaC.Gpk - C,C.pz ke (35)
t.tt I.tt

In doing so, the differential equations can be split into the following:

p_C..

and Predictor:

= K_(k') + G" +
p" K"

lit (36)

Corrector:

pn en- D(e') + C_ C_,pk"+
m

p2 C_ ."

= Kt(k') + g; c +

(37)

and

-_ - to + C.C.p 2 _'"

pnkn

_t (38)

G pn_n
= D(,') + cl --: c.pk'" + _ (39)

Pt 6t
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It can be shown that k'" and e'" are second order approximations in 6t

to the original equations (25) and (26). Thus, further corrections in k and

are not needed.

3.2 Chemical Reacting Flows

The pressure-velocity procedure has also been extended to compute chem-

ically reacting flows. In reacting flows, very large density gradients arise,

leading to strong non-linear coupling of the equations. The incorporation

of the species and energy equations demands significant restructuring of

the predictor and corrector steps in the algorithm.

The governing equations for multiple species undergoing chemical re-

actions are the continuity, momentum, energy_ and species equations. In

gen_ tensor notation they can be written:

o _-_(_j) o_P + . =

_(pu,) + _(pu,_j)
op o [

= -o%?.+ _ L_'\ o_i

(40)

+ 0_,'.') 2 au_l-
(41)

_ o [1.oh] N 0p (42)

o o (rOf,3aO,l,) +g-;,(m,_.)= A + _ _, _-;_/, i = 1,2,...,iv (43)

where p is the density; ul the velocity; p the pressure; p the effective

viscosity; h the static enthalpy; I' the effective diffusion coefficient; fi the

mass fraction of chemical species; and _. the chemical source term.

In addition to the equations described above, expressions are required

for the thermodynamic quantities. In the present study, the JANNAF data

bank [33] and the CEC76 program were incorporated for chemical equilib-

rium and thermodynamic property estimations. In the CEC76 program,

the mlnlmization of the Gibbs free energy method was used to calculate

the composition of chemical equilibrinm species. The static enthalpy and

the fluid density are then obtained by:

17



and

iV

h,= _ f_h,(T) (44)
i=l

N

p = p/RoTE f' (45)
iftMwl

where Ro is the universal gas constant; and Mw_, the molecular weight of

species.

For finite rate chemistry, the production rates for each of the species

(/_.) required in Eq. (43) are obtained using the laws of rams action. For

a general homogeneous chemical reaction, which may proceed in both the

forward and reverse directions, the stoichiometric equation can be written

N k?_ N

E _,A, ,-- E _;A,, i= 1,2,...,Na (46)
i=I Ibj i=l

where NR is the number of reaction steps.

The law of mass continuity states that the net production of species i

by reaction j is:

-zf/ , (",,- _,) k,,II,,c:_'- _,,__,IIcJ, (47)

where C'_ is the concentration of species. The net rate of change in concen-

tration of specie i by all reactions is found by summing the contribution

from each reaction considered

(dC,_ _ (dC,_ (48)_ /= \-_-/ s

In reacting flows, a coupled implicit solution procedure of a chemical

kinetics/fluid dynamics problem would require the inversion of a complex

system of matrices. In the present methodology, the chemical kinetics and

the fluid dynamic solutions are decoupled in performing the integration by

18



using the operator-splitting technique [35, 36]. This procedure is embed-

ded in the previously described predictor-corrector sequence with special

treatment of the species equation. Using the operator representation, lets

the governing equations be written in the following form:

0p/,
+ c(f,) + D(/,) = &- (49)

where C() and D() axe convective and diffusive operators for species f,

respectively.

To facilitate the splitting technique, the chemical kinetic solution only

involves a time dependent term durin 8 the predictor step. Thus, the equa-

tion

d

_M, = _'(A,/_,..-,/,,) (50)

is integrated in a fully implicit fashion. The effective chemical source terms

are then determined by dividing the increment of the chemical species by

the fluid residence time.

Subsequently, the convection and the diffusion part of the species equs,-

tions are then implicitly integrated in the correction step. The corrector

step integrates the fluid dynamic part with the effective chemical source

terms from the predictor step as follows:

C'(F_) + D(f,) -- f dpfi_ (51)
\ dt /.H

3.3 Multiphase Flows

The pressure velocity procedure is extended to include the dynsmical equa-

tions for spray droplets. Due to the strong coupling between two phases in

terms of momentum, heat and mass exchange, the incorporation of the dis-

persed droplet phase requires considerable extension of the corrector steps

in the algorithm. These new formulations are described in this subsection.

The genersl approach used for gas/droplet flows in this study is the so-

called ntracking" approach. This approach requires formulating droplets

dynsmics in a Lagrsngian frame within the continuum media for which

an Eulerian formulation is utilized. This approach has the flexibility of

19



h_nclling a poly-dispersed spray system and is ready for extension to dense

spray effects, as compared to the "two-fluid" approach. In the Euler/an-

Lagrangian two phase approach, the governing equations for gas phase are:

gp + (p_:,)= s.,

OpO_ _ Op 0+ v.,('u_u')=a_, Ozj

and for the pasticles:

(52)

(r,_) + g (53)

dt v_ (54)

a-T= F,_+ g, (_5)
Since the formulation here is essentially a statistical approach, each

computational parcel represents a large number of droplets having equs/

location, velocity, size, and temperature. The two-way coupling between

the two phases is accounted for by the interaction terms, where

IU_+ ui - v_
F_ = (s6)

"r

for evaporating spray

Np

(S7)

= N,m...,(,,,),- _,_::/v,\at ,)j

in which dV denotes the computation_ ceil,and the effectiverelaxation

time _"= t./f, with t. = pa_/18 and f = CDRep/24.

The goal of the present method is to build the coupling procedure of the

two- phase interactions in a non - i|erative, time -- accurate frame which

eliminates the conventional global iterationJ between the two-phases as de-

picted in the Particle-Source-ln-CeU (PSIC) [37] methodology. The PSIC

method first proposed by Crowe at Washington State University in the late
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1970%, is still the state-of-the-science methodology and is widely used in

industry. Our method arranges the two-phase coupling into a sequence

of predictor-corrector steps, utilizing the operator-splitting technique, and

thus does not require global iterations. This method is described briefly as

follows: We seek the finite difference form of the governing equations (49)

and (51) as follows

(_t - Ao) U_+I = Ht(U_+I) -6,P"+t + S, + P['i+* (59)

and

_+1 _ _ u?+1+ u"- ,_+1
- + g_ (60)

6t r'"

The superscripts n and n+l denote time events t" and t "+a respec-

tively. Operator Ao and H'( ) are constructed from the second-order up-

wind scheme for the convection term and the central difference scheme for

the diffusion term, respectively. The effective relaxation time _- is evaluated

at the second corrector level (**), to be defined later. The key step in our

method is the separation of the interaction term as follows:

F?i+*= -S_'U?+_+ a'$; (61)

F,'"= -s:u;" + R:; (02)

and so on.

In the above splitting procedure, the terms S_" and P_" are obtained by

rearranging equation (56):

S_'- 1 t,pdv E N,M,/(_+,;) (_3)
p=l

and

- TgE N,_,/(_, + _;)(v,-- _ + g,6_),,
p=l

We now divide the predictor-corrector procedure as follows:

(64)
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Predictor Step

/ )-_ - Ao U_= It' (UT) - _,p"+ S,- S":_z_+ R_ (65)

V,-- v,- (V")" - V,"
-9_+ (66)

_t "r"

To strongly couple the interaction terms, we use the solved _" and v_

to evaluate _'*, S_, and R_, such that a second approximation to the gas

velocity can be performed:

(_- A+)_.:_= H'(_.)- _,f + S,- S;_._+ R: (67)

This is the essential step which eliminates the global iterations. A similar

procedure was derived for the first corrector and the second corrector step

involving droplet source terms in the pressure correction equations [38].

Turbulence effects then axe added during the corrector steps. This approach

is a unique approach, including a non-iterative feature which is consistent

for all the physics involved. The algorithm is time accurate and requires

no under-relaxation for all the steps involved.

4 VALIDATION STUDIES

We have carried out detailed linear stability analyses based on model equs-

tions sad yon-Newman Fourier mode technique. Both algorithms are shown

to be unconditionally stable with second order accuracy on time domain

discretisstion. Detailed discussions can be found in the Ph. D. dissert_-.

tions o_ Zhou [39] sad Jisag [40]. Both algorithms have been successfully

coded into existing CFD codes. Specifically, the PISOC algorithm is im-

plemented in the MAST computer code for the first predictor and the re-

malning corrector steps were established to utilize the concept of MFICE

algorithm. This iteration sometimes is required especially for transonic flow

calculations. Various cases including both steady-state and t/me-dependent

incompressible flows, subsonic, transonic, supersonic and hypersonic flows

involving turbulence effects, chemistry effects as well as multiphsse flows

were studied and validated agslnst relevant experimental data or other CFD

results in the literature. In the following, higidlghts of these results will be
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su_. Other details involving grid set-ups, grid sensitivity studies,

convergence histories and boundary condition set-ups can be found in the

three Ph.D. dissertations. [39, 40, 41}.

4.1 Driven Cavity Flow

A square two-dimensional cavity with the top wall moving at a constant

speed is calculated for the Reynolds number 1000 and 10,000. this case

converges in one run in 80 CPU (CRAY/XMP) seconds with _t -- 1.0

and a 51 x 51 grid system. Figure l(a&b) shows the computed streamline

contours for Re - 1000 and 10,000 respectively. The contours are plotted

with the same level of Ghia [42], who used a much finer grid system and

long run time. This study demonstrates the accuracy of the current method

and insensivity of the convergent rate due to grid refinement.

4.2 Two-Dimensional Circular Cylinder

The flow over a two-dimensional circular cylinder is an example of the

external unsteady flow when the Reynolds number is not too small. A

41 x 41 "0"-grid was algebraically generated. A fixed velocity was set at

the outer boundary and a cyclic boundary condition was set at the front

center line. Instantaneous stream function plot at several time steps are

shown in Figure 2. More detailed calculations and comparisons of this case-

can be found in [43]. 500 Steps of this calculation take 175 CPU seconds_.

and 0.2 M words core memory. This study demonstrates the time-accurate

aspect of the current algorithm.

4.3 Backward Facing Step Flows

Both benchmark cases of the laminar and turbulenct viscosity flows over a

two-dimensional backward facing step were tested. For the laminar case,

a critics] case of Re - 800 is selected and the standard h - _ model is

implemented for calculating the turbulent flow case. A 81 x 51 uniform

grid was used and the time step 6t -- 0.5 was taken for the laminar flow

case. 350 time steps are used to reach steady-state solutions with the

reattachment length at 11.5 step heights which compares favorably with
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t=95

t=96.3125

t=97.625

t--98.9375

t_I00.25

Fi_we 2. Instantaneous stream]rue pattern for flow over a cyl/nder at Re = 200.
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INS3D results. A 47 × 33 non-uniform grid is used for the turbulent flow

case. The cs]culated reattachment length is 6.18 step heights; in good

agreement with other CFD results [44}. The turbulent flow case took 60

CPU seconds for 90 time steps (6t - 0.6). The calculated streamlines are

shown in Figure 3 and 4 for the laminar and turbulent flow case respectively.

This study demonstrates that the extention to include turbulence models

does not affect the ef[iciency of the s]gorithm.

4.4 Quasi-One-Dimensional Inviscid Flow

The above mentioned algorithms were then implemented into the MAST

code for one -dimensions] benchmark case calculations to cover a wide

range of Mach numbers. First, a one-dimensional symmetric noss]e flow as

cs]culsted for subsonic, supersonic and shock flows. The calculations were

performed on a uniform spacing of 101 grid points. Initial conditions for All

variables were set over the whole domain as being constant and equal to the

known ans]yticsl solution at the inlet with the exception of the exit pressure

which was set at a fixed value. The inlet boundary condition consisted of

extrapolating the static pressure from the interior which, together with the

given values of total pressure and tots] temperature, s]lows an isentropic

calculation of the other variables. At the outlet the static pressure was held

fixed, and any unknown variable was found from the extrapolation.

Figure 5 shows the steady state Mach distributions for subsonic, chocked

and supersonic llows. This study demonstrates the most important features

of the results, which are the capabifities of low to high speed flow cslcu-

lations, the sharpness of shock capturing, accuracy of shock positioning

and speed of computation. The e/_ciency assessments of the s]gorithms

are summsrised in Table i. Examination of Table 1 shows that the s]go-

rithms gave satisfactory shock capturing results with large CFL number

and converged fast for sit speeial flow reghnes.

4.5 Compressible Channel Flows Over a Circular Bump

Validations of the PISOC s]gorithm for s]l-speed capabilities were further

tested for two-dimensions] flows. All the calculations were performed using

a norms]ized time step of 0.1 for I00 time steps to reach steady state
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Figure 3. Streamline of laminar flow over backward facing step.
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Figure 4. Streamline of turbulent flow over backward facing step.

27



"i

o,1

0

0

0

0

1._.c_F_XID
° M'FICE traffic

Analytic

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
X Direction

Figure 5. Quasi-one-dimensional inviscid, no,zzel flow.

28



o o, o. -_

NbM I_ M _

 ]ii

]

]

"i

Z

I!

29



Iso-Mach Lines

00 50 la0 1_0 Z_0

Ma_h Number Distributions

0

bower Wall
i

Figure 6. Results of bumped chsnnel flow (M_. = 0.5).
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Figure 7. Results of bumped channel flow (M__. = 0.675).
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Figure 9. Results of bumped channel flow (M_.. - 1.65).
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solutions. Initial values for all variables were set constant over the whole

domain for the flows tested, ranging from subsonic to hypersonic conditions.

The calculated Msch number contours and surface Msch number pro-

files are shown in Figure 6-9 for subsonic, transonic and supersonic features

of the results showing the capabilities of low to high speed flow calculations,

the sharpness of shock captur/ng, accuracy of shock positioning, and speed

of computation. The efl]ciency of the algorithms is very consistent. For all

cases tested the CPU is 0.18 rasper grid point per time step, which is a very

fast conver_enee rate among the available pressure-correction methods. An

s.xisymmetric inviscid flow striking s blunt body leading edge with s free

stream roach number up to Ma_ --- 10 has also been tested, and the calcu-

fated static Math lines and the static temperature along the sxisymmetr/c

line are shown in Figure 10.

4.6 Chemical Reacting Flows

A careful validation of the present MAST code with both equilibrium chem-

istry and finite rate chemistry has been carried out. First, an equilibr/um

chemistry example involvin 8 hypersonic viscous flow, with free stream Msch

number of 10.0 past a two-dlrn_n_onal blunt body with c/rcu]lar nose is

tested. The Reynolds number is 8,600 and the flee stream _emperature is

assumed to be 300 K. Figure 11 i11nstrltes the iso. Msch contours of both

the ides] ps case and the equilibrium sir case. In Figure 12, the calcu-

lated static temperatures are plotted along the flow symmetric line. The

eHects of equ/]/brium chemistry on the static temperature jump and shock

location are silp_cant in these calculations, which agree well with other

calculations in the literature.

The second case was the low-speed Burke-Schuman diffusion flame. The

geometry and inlet conditions are illustrated in Figure 13. A 8lobal two-

step Methane/Oxygen finite rate reaction model of [45] is employed for this

case. The calculated flame temperature contours and mass fractions along

the centerline sze shown in Figure 14. The results compare very well with

the analytical solutions reported in [47]. This study demonstrates XXX.
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Figure 11. Viscous hypersonic flow over a blunt body, 81 x 41, (a)
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Figure 12. Tempersture profiles along the forward center line.
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4.7' Multi-phase Flows

For multi-phase flows, we first applied the current method for the predic-

tion of particle dispersion controlling the turbulence with the mounting of

different screens. The experimental set up of this case wss conducted by

Snyder and Lumley in 1971 [46]. Particle densities and sizes are chosen to

examine the dispersion of light and small (46.5 pm diameter hollow glass),

as well as heavy (87.0/_m solid glass) particles. Five thousand computa-

tional particles were sampled to calculate the mean squared dispersion with

respect to time. Comparison of the predicted and measured particle disper-

sion are shown in Figure 15. The agreement is considered quite good. The

current method has the flexibility of taking into account both the gravity

(crossing trajectory effect) and the non-stokian drag law as compared to

the continuum approach and time sccurw:y.

A poly-dispersed pulsed hollow-cone spray case of practical importance

is also chosen for the test condition listed in Table 2. The calculation starts

at 5 mm downstream of the nozzle, and the information of particle size

distribution and velocity distribution is directly taken from the measure-

ments. Figure 16 shows the particle distribution plot and the gas velocity

vectors for a 30 deg spray. With the back pressure of I stm, the intersection

between the gas and the droplets trajectories is quite strong. The shape

of the spray is no longer conical even for a very short time, and the spray

penetration is suppressed due to the interactions of the droplets with the

induced sir flow. These flow patterns and spray shapes compared quite

favorably with the expeximental results.

The efficiency assessment of the present numerical method is shown in

Table 3 for the hollow cone spray case. The CPU time on a CRAY X/MP

using the MAST code utilizing the present method for the transient spray

calculations with 6t - 0.1ms is given. It can be seen that the amount of

CPU time is reduced about one order of magnitude by using the present

method. Also, the present method is rather particle number independent.

This is due to the fact that the particles at each time step, and the source

terms in the continuous passes, are updated for all the particles at each

Eulerian control volume. In contrast for the TEACH/PSIC method, all

the particles have to be tracked, and the continuous phase flow field is held

frozen between the global interactions at each time step.
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Figure 15. Particle dispersion in a flow with mechanically produced turbulence.

Chamber Injection Injection Gas Mass Sautet mean
gas ptmsum velocity anglz dmmty flow rate radius (SMR)
(arm) (m s- l ) (des) (ks m - 3) (kg s- ! ) (/zm)

1 200 30 1.123 4 x 10-" 2"5

Table 2. Hollow cone spray

MAST 2D TEACH/PSIC

Particks CPU time (s) Particles CPU time (s)

Singie.ozif_ spray
41 x 61 grid
300 time laeps

Hollow cone spray
31x31 Irid
200 time metro

600 126-9 800 1420
1200 135.7

400 74.9 800 934
1000 88-3

Table 3. Efficiency assessment of numerical method.
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The pressure-velocity algorithm developed in this study can be imple-

mented in the framework of finite-volume, finite difference, or finite-element

formulations. All the extensions of the current algorithm, including turbu-

lenes models, chemistry models (equilibrium and finite rate), and particle

tracking subroutines were incorporated into the MAST code in a modular

form. These submodel modules are stand-alone solvers and can be trans-

ferred from one code to another with few modifications. For example, the

chemistry module originally tested in the MAST code was transferred to

the MFICE code which utilized staggered grids and iterative procedures

with sucessful applications within one month period.

5 CONCLUSIONS AND RECOMMENDA-

TIONS

5.1 Summaries

Efficient pressure-velocity coupling procedures have been developed and

investigated for the calculation of fluid flows at all speeds. Two algo-

rithms, PISOC and MFICE were studied, and a combined algorithm was

implemented into an existing CFD code, MAST, with physical submod-

els including two-equation turbulence models, equilibrium and finite-rate

chemical reaction mechanisms and gas-droplet multiphsse models. Some

important conclusions are summarised as follows:

0

1

3.

A physics-consistent pressure equation is derived to emcompass flows

in all Math number rug/rues. This pressure equation is implemented

in the PISOC algorithm as a pressure correction method and in the

MFICE algorithm as a pressure substitution method.

Both PISOC and MFICE algorithms are non-iteration algorithms and

are unconditionally stable, based on linearized stabRity analyses.

The pressure-velocity algorithm can be extended to include extra

physical submodels, including turbulence, chemistry, and multiphase

flows without invoking iteration procedures.
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. The current algorithm can be implemented on both staggered and

non- staggered grid systems without deteriorating the computational

efBdency.

5. Time accuracy can be achieved within prescribed predictor corrector

steps without invoking iterations.

6. Extensions for arbitrary body-fitted coordinates do not alfect the

computational efficiency.

5.2 Algorithm Limitations

Although the current method is developed for genera/time-accurate tran-

sient and steady state flow calculations, the time accurate aspect of the cur-

rent method for high speed transient calculations is not firmly established.

This aspect is strongly coupled with the spatial discretization of the govern-

ing equations. In addition, the finite rate chemistry procedure, currently

implemented, is only loosely coupled with the fluid dynamics, based on the

operator-splitting method. To accurately account for the sero-thermal phe-

nomens_ transient chemical reacting flows, such as the ignition processes,

and the thermal property changes due to chemistry, have to be strongly cou-

pled with the fluid dynamics through the continuity equation. With the

present operator splitting, the current pressure-velocity algorithm cannot

be used for time-accurate high-speed and chemical reacting flows involving

complex chemistry.

5.3 Recommendations

The future work only concerns the numerical aspects of the pressure-based

method.

I. The pressure-velocity coupling procedure should be further explored

to include density and temperature effects, due to complex chemistry

and other sources, to establish strong coupling among fluid dynamics,

thermal energy, and species to achieve time accuracy with arbitrary

chemical kinetics.
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2. More complex flows will result in more sparsity in time scales asso-

dated with various phyqics. Although the current method is stable

using rather large time steps, adaptive time step adjustments should

be devised, to match the solution based on optimal time steps asso-

dated with the relevant physics.

3. Due to the capability of the current method to cover both incom-

pressible sad compressible flow regimes simultaneously, the pressure-

velodty algorithm should be extended to include volume displacement

effects due to the co-existence of liquid and gas with the same cal-

culation grid. This will involve reformulating the momentum and

mass fluxes across the grid boundary and modifying the "pressure"

equation within the grid.

4. Currently, the solution method, such as the conjugate gradient square

method used here, for solving the pressure equation, is still inefficient.

Multigrid methods or multi-levd error propagation methods should

be included in the future, to speed up solving the pressure equation.

5. For complex configurations, the pressure-velocity coupling procedure

should be extended for implementation into multi-zone methodolo-

8ies. Coupling between calculation zones, involving different bound-

sry conditions, should be developed to smoothly transfer information

back-sad-forth in the pressure-velocity coupling mode especially for

tmmstched grid patching.

45



6 References

1. D. A. Anderson, J. C. Tannehill and R. H. Pletcher, Computational

Fluid Mechanics and Heat Transfer, Hemisphere Pub., N. Y., 1984.

2. 1t. M. Beam andR. F. Warming, "An Implicit Finite-Differnce Algo-

rithm for Hyperbolic Systems in Conservation Law Form", J. Comp.

PhyJ., 22, 87, 1976.

. W. R. Briley and H. McDonald, "Solution of the Multi-dimensional

Compressible Navier-Stokes Equations by a Generalized Implicit Meth-

od", J. Comp. Phy+., 24, 372, 1977.

4. R.W. McCormack, "The Effect of Viscosity in Hypervelocity Impact

Cratering', AIAA paper 69-354, 1969.

1 J. L. Steger and R. F. Warming, "Flux Vector Splitting of the In-

viscid Gas-Dynamic Equations with Applications to Finite Difference

Methods", J. Comp. Phya., 40, 263, 1981.

6. S. K. Godunov, "A Difference Scheme for Numerical Computation of

Discontinuous Solution of Hydrodynamic Equations", Math. Shornik,

47, 271, 1969.

7. S. Eidelman, P. Colella and R. P. Shreeve, "Application of the Go-

dunov Method and Its Second-Order Extension to Cascade Flow Mod-

eling", AIAA J., 22, 1609, 1984.

8. J. Dukowics, "A General, Non-Iterative Rieman Solver for Godunov's

Method", J. Comp. PhyJ., 61,119, 1985.

9. P. L. Roe, "Approximate Hieman Solvers, Parameter Vectors and

Difference Schemes", J. Comp. Phys., 43, 357, 1981.

10.

11.

A. Harten, "On A Class of High Resolution Total Variation Stable

Finite Difference Scheme", SIAM J. Numer. Analp., 21, 1, 1984.

H. C. Yee, "Construction of Explicit and Implicit Symmetric TVD

Schemes and Their Applications", J. Comp. Phya., 68, 151, 1987.

46



12. C. Hirsh, Numerical Computation of Internal and External Flows,

Vol. 2, John Wiley and Sons, Inc., New York, 1990.

13. C. L. Merkle and Y. H. Choi, "Computation of Compressible Flow at

Very Low Mach Numbers", AIAA-86-0351, 1986.

14. J. Feng and C. L. Merkle, "Evaluation of Preconditioning Methods

for Time- Marching Systems", AIAA-90-0016, 1990.

15. J. L. C. Chang and D. Kwok, "A Three-Dimensional Incompressible

Flow Simulation Method and Its Application to the SSME', AIAA-

85-0175, 1985.

16. S. E. Rogers and D. Kwok, "An Upwind Differencing Scheme for the

Time Accurate Incompressible Navier-Stokes Equations", AIAA-88-

2583, 1988.

17. J. E. Welch, F. H. Harlow, J. P. Shannon and B. J. Daly, The MAC

Method, Los Alamo_ Report, LA-3425, 1966.

18. A. A. Amsden and F. H. Harlow, Los Alamos Scientific Report, LA-

4370, 1970.

19. S. V. Patankar and D. B. Spalding, "A Calculation Procedure for

Heat, Mass and Momentum Trsmder in Three-Dimensional Parabolic

Flows", Int. J. Heat 0 MaJ, Tmn,fer, 15, 1787, 1972.

20. S.V. Patankar, Numerical Heat Tranler and Fluid Flow, Hemisphere,

New York, 1980.

21. J. P. Van Doormaal and G. D. Raithby, "Enhancement of the SIM-

PLE Method for Predicting Incompressible Fluid Flows", Num. Heat

Tran,fer, 7, 147, 1984.

22. J. P. Van Doornaal, G. D. Ralthby and D. H. McDonald, "The Seg-

regated Approach to Predicting Viscous Compressible Fhdd Flows",

J. Turbo ASME, 109, 268, 1987.

23. V. L. Sha, et al. "COMMIX-1B Code", Argonne National Lab.,

NUREG/CR-4348, 1985.

47



24. K. C. Karki and S. V. Patankar, "Pressure Based Calculation Pro-

cedure for Viscous Flows at all Speeds in Arbitrary Configurations",

AIAA J. 27, 1667, 1989.

25. R. I. Ins, A. D. Gosman and A. P. Watkins, "The Computation of

Compressible and Incompressible Flows by a Non-Iterative Implicit

Scheme", J. Comp. Phys., 63, 66, 1986.

26. R. I. Ins, "Solution of the Implicit Discretised Fluid Flow Equations

by Operator-Splitting", J. Comp. Phys., 62, 40, 1985.

27. G. M. Neely and R. W. Claus, "Acclelerated Convergence for Incom-

pressible Flow Calculations", AIAA paper 85-0058, 1985.

28. A. Wanik and U. Schnell, "Some Remarks on the PISO and SIMPLE

Algorithm for Steady Turbulent Flow Problems", Int. J. Numer.

Method for Fluid4, 12, 555, 1989.

29. Y. Q. Hu and S. T. Wu, "A Full-Implicit-Continuous-Eulerian Scheme

for Muiti-dimenisonal MHD Flows", J. Comp. Phys., 55, 33, 1984.

30. F. H. Harlow, and A. A. Amsden, "A Numerical Fluid Dynamics

Calculation Method for All Flow Speeds", J. Comp. Phll_., 8, 197,

1971.

31. C. L. Merkle, S. Venlmteawarma, P. E. O. Budow, "The Relation-

ship Between Pressure-based and Density-based Algorithms", AIAA

Paper 92-0425, 1992.

32. C. L. Merkle, P. E. O. Buelow and S. Venksteswaran, "Comparison

Betweent the PISO Algorithm and Preconditioning Methods for Com-

pressible Flow", 10th Workshop for Computational Fluid Dynamics

Application in Rocket Propulsion, NASA/MSFC, April 28-30, 1992.

33. D. R. Stall and H. Prophet, "JANNAF Thermochemical Tables", 2nd

ed.,NSRDS -5B5 37, 1971.

34. S. Gordon and B. J. McBride, "Computer Program for Calculation

of Complex Chemical Equilibrium", NASA SP-273, 197'6.

68



35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

J. B. Greenburg, "A New Reliable Family of Spllt-Operator Method

for Computing Reacting +F.Iow", Int. J. Numer. Method Fluid, 4,653,

1984.

Z. J. Chen, C. P. Chen, and Y. S. Chen, "A Pressure-Corrector

Method for the Calculation of Compressible Chemical Reacting Flows",

AIAA-92-3032, 1992.

C. T. Crowe, M. P. Sharma and D. E. Stock, "The Particle-Source-In

Cell (PSIC) Model for Gas-Droplet Flows", J. Fluid Eng., 99, 325,

1977.

C. P. Chen, H. M. Shang and Y. Jiang, "An Efficient Pressure-

Velocity Procedure for Gas Droplet Two-Phase Flow Calculations",

Int. J. Num. Method FluidJ, 15,233, 1992.

N. Zhou, A New Pressure-Velocity Method for An-Speed Flows with

Arbitrary Geometric Boundaries, Ph.D. Dissertation, The University

of Alabama in Huntsville, Nov. 1992.

Y. Jiang, A New Pressure-Velocity Coupling Procedure for Inviscid

and Viscous Flows at All Speed, Ph.D. Disseration, The University

of Alabama in Huntsville, Dec. 1992.

H. M. Shsa8, Numerical Studies of Spray Combustion in Liquid-

Pueled Engines, Ph.D. Dissertation, The University of Alabama in

Huntsville, Nov. 1992.

U. Ghis, K. N. Ghia sad C. T. Shiu, "High-Resolution for Incom-

pressible Flow Using the Navier-Stokes Equations and a Multigrid

Method", J. Comp. Phya., 48, 387, 1982.

Y. Jiang, C. P. Chen and P. K. Tucker, "Multigrid Solution of Un-

steady Navier Stokes Equation Using a Pressure Method", Numerical

Heat Tmnfee, A, 20, 81, 1991.

T. Wang sad Y. S. Chen, "A Unified Navier-Stokes Flowfield and Per-

formance Analysis of Liquid Rocket Engines", AIAA-90-2494, 1990.

49



45.

46.

47.

48.

49.

50.

C. K. Westbrook and F. L. Dryer, "Simplified Reaction Mechanism

for the Oxidation of Hydrocarbon Fuel Flames", Combustion Science

and Technolo#y, 27, 31, 1981.

W. H. Snyder and J. L. Lumley "Some Measurements of Particle

Velocity Autocorreltation Function in a Turbulent Flow", J. Fluid

Mechanics, 48, 41, 1971.

C. P. Chen, et al., "A Computer Code for Multi-phase All-Speed

Transient Flows in Complex Geometries", MAST Version 1.0", Oc-

tober, 1991.

T. S. Wang and Y. S. Chen "A Unified Navier-Stokes Flow Field

and Performance Analysis of Liquid Rocket Engines" AIAA Paper

90-2494.

R. C. Rogers and W. Ckinitz, "Using a Global Hydrogen-Air Com-

bustion Model in Turbulent Reacting Flow Calculations" AIAA 3. 21

581, 1983.

K. Gross, NASA/MSFC, Minutes of 27th JANNAF Combustion Sub-

committee Meeting, "CFD Code Survey for Thrust Chamber Appli-

cation", Nov. 5, 1990, Cheyenne, Wyoming

50



7 Appendix 1

List of Publications Resulting from this Investigation

I*

.

*

.

.

.

.

.

A New Pressure-Velocity Method for All-Speed Flows with Arbitrary

Geometric Boundaries: Modified FICE Method, Ning Zhou, Disserta-

tion Thesis, Department of Mechanical Engineering, The University

of Alabama in Huntsville, 1992.

A New Pressure-Velocity Method for All-Speed Flows with Arbi-

trary Geometric Boundaries, Y. Jiang, Ph.D. Dissertation Thesis,

Department of Chemical Engineering, The University of Alabama in

Huntsville, 1991.

Numerical Studies of Spray Combustion in Liquid-Fueled Engine, tt.-

M. Shang, Ph.D. Dissertation Thesis, Department of Chemical Engi-

neering, The University of Alabama in Huntsville, 1991.

Modified Full-Implicit-Continuous-Eulerian (MFICE) Method for All-

Speed Flows, N. Zhou, S. T. Wu, and C. P. Chen, ]. Comp. Phym.,

1991 (submitted)

A New Pressm_Bssed Numerical Method for All-Speed Flows in Ar-

bitrary Configurations, N. Zhou, S. T. Wu, and C. P. Chen, Comput-

ers and FluidJ, 1991 (submitted).

Multigrid Solution of Unsteady Nsvier-Stokes Equations Using a Pres-

sure- Method, Y. Jiang, C. P. Chen, and K. Tucker, Int. J. Numerical

Heat Tmnlfer, 20, 88-93, 1991

Turbulence Modulation Effects on Evaporating Spray Characteristics,

H.-M. Shang, C. P. Chen, and Y. Jiang, AIAA Paper 90-2442, 1990

An Efficient Pressure-Velocity Coupling Method for Two-PhMe Gas

Droplet Flows, C. P. Chen. H.-M. Shsng and Y. Jiang, Int. ?. Nu-

merical Heat Tronefer, 15, 8233-245, 1992

51



9. A New Pressure-Velocity Coupling Procedure for Inriscid and Viscous

Flows at All-Speeds, Y. Jiang, C. P. Chen, and H.-M. Shang, 4th

InternationAl Symposium on Computational Fluid Dynamics, Vol. 1,

545-550, 1991; submitted to AIAA J., (1992)

i0. A Pressure Correction Method for the Calculation of Compressible

Chemical Reaction Flows, Z. T. Chen, C. P. Chen, and Y. S. Chen,

AIAA Paper 92-3032; submitted to J. Propulsion (1992).

52



8 Appendix 2

Sample Inputs and Results

53



Appendix 2

Sample Inputs and Results

A. General Innut File

The MAST family computer programs consists of a set of subroutines controlled

by a short main program. The fundamental s_ can be found in the MAST user's

manual version 1.0 [47]. The _ capa_lifie_ resulting from the current study, axe-

summarized in Table A. 1. In the following, the updated input file descriptions and the

handling of boundary conditions for the 2-D/Axisynm3et_ MAST code are described.

The Input strucun_ used in the MAST code utilizes blocks of optional namel_

under several keywords. Each of the keywords and associated namelists are described

here. These "keywords" are optional, i.e., skip ff not needed.

There are nine keywords built into the current MAST code. These are : GRID,

BOUND, SOLV, PROPERTY, TURBULEN, SPRAY, REACTION, RUN and

END JOB. In addition, there is one extra block called CONTROL which is used for

identifying nmneric options in the code. The CONTROL block is usually created first in

the input file to be read into the program through Logic Unit 1. All entries are optional If

cerutin entries require numerical values or logical values, they are entered after the enny -_

names, separated by at least one blank space. SI unit is used for requix_ numerical values.

Block name, entry names, the possible range of values, and a short description of the

variable are described as follow.

1. CONTROL Block : This block is always put at the top of the input file.

RESTART:

SWIRL:

IMONjMON:

MONU,MONV,

MONP, MONTEMP,

MONTK,MONTE:

It activates the usage of a reslart file as initial

conditions by reading through LU--4.

It activates the swirl velocity calculations.

It specifies the monitor grid point at 2-D map (IMONJMON),

this allows the user to monitor the convergence progress for

the selected monitor variable solved.

The default value is (2,2).

Only one variable can be specified as a monitor variable tracking on

screen. Such as velocity at (x,y) location, pressure,

turbulent kinetic energy,

dissipation rate. The defanlt is MONU.
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ERRCG:

NCGM:

ERRM:

INCOMP:

COMPRES:

01_.

NCRT:

OMGF:

OMGT:

PHI:

OMGPHI:

]_'D"

Convergency criamon for conjugate gradiem

Matrix solve_. The default value is 0.01.

Maximum Conjugate Gradimt solver iteration number.

The defank number is 100.

Termination criumon for steady state solutions

using the time mazching scheme. The default value is 0.0001.

Inconqnm.sibl¢ flow calmdalie_ (= I).

(INCOMP=O) Compressible flow options.

1 for supersonic flows, 0 (default) for low speed

flows.

Number of _ steps (default=2).

Inm'_ parameter f_ face velociti_

I for intezpolatioa and 0 for averaging.

The defanlt valueisI.

For s_ _ field relaxation.

P_ inthe finimdiffcn'encelimiter.

1-- centralI/2-- no name, I/3-- 3rdorderupwind,

0 -- Fromm schem,-1/2-- no name, -I -- 2nd orderupwind.

Weightingparameterforupwind scheme and otherscheme.

Numerical value of OMGPHI ranges from 0. to 1. The resulting

scheme is weighted according to:

PHI*(I-OMGPHD + 1st order upwind scheme*OMGPHI

End of Block inpuL

For _, a typical CONTROL block for running a laminar backward-facing slelry

flow using a second order upwind scheme and monitoring the convergence of U velovity

on gridpoint(17,4) would have the following input block:

CONTROL INCOMP OMEGD 0 PHI -1.00MGPHI 0.0 ERRCG 1.E-1ERRM 1.E-.4

IMON 17 JM.ON 4 MONU OMC.tF 0.2

A typical CONTROL input for compt_sibl¢ flow calculations is given in Figure A. 1.

2. fagD..Blmlg

NX- Number of grid pointsin the x d/rection(>3).
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NY:

XLEN:

YLEN:

READXY:

UNIFORM:

XDIR, YDIR:

IST:

IEND:

DST:

DEND:

EXP:

DELT:

Number of grid points in the y-direction (>3).

It identifies the length in SI unit of the entire physical calculation

domain in the x dixection.

The length of the entire calculation domain in y direction.

It activated reading of an externally generated grid point X(IJ),

and Y(I,J) from input file "sgrid.d". The input

format is given as:

- READ(4,9910)NX,h_

READ(4,9920) ((XaJ)j=_ ,NX)j=I,NY)

READ(4,_m) ((Y(I,J3,I=_,NX)j= I,NY)

9910 FORMAT(215)

9920 FORMAT(10E10.4)

This input format can be modified by the user.

It _ a uniftmn gridsystem

It specifies an X-direction grid (only

dependent on I) or a Y-direction grid (only dependent

on J). Either one must be specified at the beginning of a line.

The grid cell starts from IST index

The grid cell ends with IE index

The grid cell starts fi_om DST

The grid cell ends with DEND

Grid space stretching facl_ (see the footnote *) using the power law

formula.

F_ _'id ceil size. EXP and DELT can

be specifiedrely once.

*--"power law" formula. Such a grid generation can be described as follows:

(a) Explicit "pow_ law":

For example, XDIR IST I0 IE 25 DST 3.2 DEND 5.6 EXP 1.5, the power-law fommlatkm

for such a grid distribution internally calculated as:

X(I,J)= DST+ (| I- IST_ ,ISXP(DEND-_ DST)
\IEND- IST)

I=IST, ........ ]END for EXP>0

IEND- I ,ex_

X(I,J) = DEND-(IEND_ IST)(DEND- DST)
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I=IST, ........IEND for EXP<0

If EXP = ± I, grid is uniform

• If EXP > I, grid is compre_k_d close to DST and expanded close to DEND.

If EXP < - I, grid is expanded close to DST and compressed close to DEND.

• EXP >I and exp < - I can be used _ give a symmetric grid distribution.

Co) Implicit "power-law":

If the user specified fL-st grid cell size DELT instead of EXP, the grid gencmum"

automatically computes the slre_hing factor, EXP, and distributes the grid maintaining the

f'_st grid size DELT = X(IST +I, J) -X(IST, J_ for DELT > 0 or the last grid size IDELT[

=X('IEND,/)-X(IEND-I, J) for DELT < 0.

For example,a typical grid system used for a driven cavity flow in a square domain of 1

meter by 1 meter with grid clus_'ing near the waft regions and top driven lid region can be

specifies using the power law formula with a su'eching factor 1.5 as:

GRID NX 51 NY 51

XDIR IST 1 1END

XDIR IST 26 IEND

YDIR IST 1 IEND

YDIR IST 26 lEND

26 DST 0.0 DEND 0.5 EXP 1.5

51 DST 0.5 DEND 1.0 EXP - 1.5

26 DST 0.0 DEND 0.5 EXP 1.5

51 DST 0.5 DEND 1.0 EXP -1.5

3. Pmmmv block (PROP_

VISCOS:

DENGAS:

CPGAS:

KGAS:

PRG:

TIN:

PIN:

UIN:

VIN:

OMEGA:

GAMMA

PSTAG:

TSTAG:

It specifies the fluid viscosity. The default value is 1.

It _ tbe fluid de_. "I'ne default value is 1.

It specifies the fluid spec_ heat. The default value is 1.

It specifies the fluid thermal conductivity.The default value is 1.

It specifies the fluid Prandtl number. The default value is 0.74.

It specifies the flow field initial _. The default value is 0.

It specifies the flow field initial pressure. The default value is 0.

It specifies the flow field inilial U velocity. The default value is 0.

It specifies the flow field inimil V velocity. The defauk value is 0.

Angular mommmm

7- C._._P
c,,

It specifies the flow field total pressure at the Net. The ddault value is 0.

It specifies the flow field total _ at the inlet. The defaalt vai_ is 0.
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Typicalexamples of using this input block to idendity invisid and viscous flow calculal/om are

given in Figure A.1 and A.2.

4.Runfirrm block (RUN)

DT:

DTMIN:

DTMAX:

CFLN:

NSTEP:

NPRI:

N-PR2:

NEX:

LPFAC:

LPGEO:

STOP:

It _ci_es time _,ep.

It _the__ rap.

k specif_ the max/mum time _'p.

It _'ifies the CFL number.

The dcfauk value is I.

The real DT is calculated based on CH.e. If it is less than DTMIN,

DT=DTMIN.

Maximum time step numb_ to be compuuxt.

It specifies the screen moni_ output fiequency.

It spocifi_ the mommr OUtl_ mmm file fi_ltm_/.

It spccifi_ the example numbs. The user can code in

SUBROUTINE EXAMPL. If this option is used, no other

input dam is rcqt_l unlcu a change is

It specifics the monitor to output control volume face quantities.

The default value is 0.

It specifics the monitor to output the Jacobian coie_cicnts.

The default value is O.

If tl_ _is _ MAST ccxic

only checks the input data and no exc_ation is done.

For example, to run a job using time step 0.1 socond for 300 time steps and to moailnr the

convergence pmgess every 10 tin_ steps and save results every 100 time steps requires:

RUN DT 0.I NSTEP 300 NPR1 10 NPR2 I00

5. Variahh_ mintinn hirmk (SOLV_

U,V:

P:

TEMP.

TK, TE:

SW:

PATC:

It idendify the velocity component to be solved.

Pressure will be solved.

T_ will be solved.

Turbulence kinetic energy and dissipation rate will be solved.

Swirl velocity will be solved. (SWIRL must be activa_i in Selection block).

Panicle tracking is active.

58

OF POOR QUALIT_'



Examples using this inpm block for running laminar and mrbulcmt flows are given in Hg_

A.1 and A.2.

6. Turbulent block fI'URBU_: CT1, ,C_1"2,CMU, SME, SMK : Tu_ulen_ model conslm_

CTI = 1.44,

C"IR- 1,92,

CMU =0.09,

SME =1.3,

SMK =I.0,

TKIN, TEIN :

SCALE:

They specify the initial value of tm'_eace kinetic energy and

the dissipation rate. The inlet TKIN is usually estimated based on

TKIN=0.01xUINxUIN and the measured TEIN should be used. If

no infcrtmtion is known, the dissipation raz is calculated based of

some estimated mflxdcnce length scale SCAI_

rf SC.ALEspc_cd, TEIN _sc_cu_
as TEIN = CMUx TKIN_J/SCAL_

7. Sorav block (SPRAY_

SMR: It specifies the partiedc Sauta" mean radius.

X-SQR:

DENFF:

TEMP.

IST, IEND,

JST, ]END:

FLOWP :

VINJ:

NPTS :

If SMR < O, k specifi¢_ a constant particle tad/us.

h specifies the Imilt-in Chi-squffirc droplet _ distribution.

k swetr_ pmi_ dcn_.

Itspcei_ pmi_ mnpmnt_

_rtie_ _ inj¢_ froma intn_ speeifi_ fxc_ngrid
0ST, JST) to fIEND, JEND)

k specifies spray flow rate.

It _ particleinjoeti_ velocity.

It _ particle Im.me_ lmr tinm sty.

The following example ilitmm_ a solid-cone spray due 93 a point injection:

SPRAY SMR 150.E-6 X-SQR DENFF 840 TEMP 298

IST2 1END 2 JST 2 JEND 2NTPS 5

VINJ 86.41 FLOWP 5.13E-3
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8. Bonndmy hh'_ (BOUNDS"

Bcmmtazy conditions must be specified in a patched form:

IST, IEND, JST, JEND, B.C. type, variable names.

The variables are defined as

IST, IEND: The starting and finishing points in the I direction grids.

JST, JEND: The stall/llg and _g points in the J _on grids.

If IST-IEND or JST--JEND, then a line bcundmy condition is used.

The following keywordsused to specify B.C. v/pc :

INLEt: Inlet boundary condition, followed by variable names to be d_

OUTLET." Outlet boundmy condi_a.

WALL: No slip wail boundary coadidoa, followed by

variables. Wall funcuon of ua°oulence model activated.

SYMMETRY : It specifies a symmetric b.c.

CYCLE: It specifics a cyclic b.c.

BLOCK : It specifies a blockage. Wall functic_

of turbulence model a_dvated on block face.

Variable name keywords (specify b.c.)

U : x-direction velocity.

V: y-direction velocity.

TK : Turbulence kinetic ¢nexgy in INLET.

TE : Turbulence dissipation rate in INLET.

'I_-MP: Temperann_ at INLEF, WALL or BLDCK.

Q:. It specifies the wall heat fluxes. The default value is 0.

YH2, YO2, YHO, YH20, YH, YO, YHO2, YH202,YO3 :

Mass fraction at inlet.

The defauk values are 0.

Examples for this block can be illustrated by the calculations of a incompressible

turbulem backward-facing step flow as follows:

BOUND

IST 1 IEND 59 JST 1 JEND 1 WALL

IST 1 IEND 59 JST 35 JEND 35 WALL

IST 1 END 1 JST 16 JEND 35 INLET U1.

IST 59 1END 59 JST 1 JEND 35 OU'H_T

IST 1 IEND 11 JST 1 JEND 15 BLOCK
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9. Reaction block (RCHEM3

EQLM: It specifies the equiliixium chemical reaction.

This option requires anoth_ input file 'chem.in'.

The default value is 0.

ns:

no:

nf:

bO:

The input file "chem.in" requir_ the following keyword:

Number of speci_ m be _

Numver of cl_ to be considered.

Number of _ to be f_a ff 'frozen' is activated (T).

Element convervatioa constant, a set of 'ne' numbers.

For example, air 102+3.76N2 has

number of element O=1x2=2

number of element H=3.76x2=7.52,

thus me conservation constants are 2,7.52 or 1,3.76.

chcnx_zal species

chemical element

frozen T to activate the fa'ozen chemistry option

A typical example is given in Figure A.4

FINIR."

LCHEM:

INISPE:

YH2, YO2, YHO, YH20, YH, YO, YH202, YO3, YHO2:

It specifies the initial mass fr_on of species.

The default values are 0

RATIO:. It specifies the equi_ ratio in 2-step H2+O2 model.

Examples fro" chemisu'y block can be seen in Figures A.3-A.5.

It specifies the finite rate chemical reaction.

The default value is O.

It specifies the the finite rate reaction modeL

The default is O.

LCHEM = 1 : 2-step H2 + 02 model

LCHEM = 2 : 8-step H2 + 02 model

It _ tim _ be given initail values, the default vakm it O.

10. ENDJOB: ENDJOB identifies the end of the input file.
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B. Samplz Calcn____mm

In this section, five sample calculations of SSME thrust chamber flows are presmm_

The input files used for the calculations are shown based on the geometry and inlet

conditions of [48] as well as the calculated iso-Mach conwms and mnpcrmme conumngin

Figures A.1-A.5. The five cases chosen are for inviscid, uu'tmlent non-leactmg calculmizm

with the k-epsilon model, turbulent reacting flow with equilibrium chemistry,

reacting flow with a 2-step reac_on kineth_ model according to [49], and v.u'bulent __

flows with a 8-step reaction kinetics model [49]. The calculat_ vacuum specific _

values are also shown in the figures, which may be compared with experimental dam.d

453.3 seconds.

Finally, Table A.1 exhibits an updated MAST code capability status from the

survey date of October 1990 shown in Ref. [50].
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SAMPLE CASE i

CONTROL COMPRES NCRT 3 OMGM 1 NCGM 50

OMGD 1.0 PHI -1.0 OMGPHI 0.00 OMGT 0.50 OMGF 1.00
ERRCG 1.0E-2 ERRM 5.0E-6 IMON 81 JMON I0 MONU

;RESTART
GRID NX 81 NY 41 AXI SYM READXY
BOUND

IST 1 IEND 1 JST 1 JEND 41 INLET

IST 1 IEND 81" JST 41 JEND 41 SLIP Q 0.
IST 1 IEND 81 JST 1 JEND 1 SYMMETRY
IST 81 IEND 81 JST 1 JEND 41 OUTLET

TURB_R_T TKIN 3.072 TEIN I0000.

PROPERTY VISCOS 0.0

PSTAG 20240946.90 TSTAG 3637. GAMMA 1.2 GMW 10.18
SOLV U V P TEMP TK TE

RUN DT I.E-5 DTMIN 1.0E-7 DTMAX I.E-2 CFLN 1.00 NSTEP I00

NPRI 1 NPR2 i00 NEX 18 ; LPFAC ; LPGEO
ENDJOB

_ 0F MACH _

X(¼)

Figure A.I Sample SSME Nozzle Flow Inputs and Results --- Inviscid.

ISP = 524.44 sec.
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6AMPLE CASE 2

13NTROL COMPRES NCRT i OMGM i NCGM 50
OMGD 1.0 PHI -i.00MGPHI 0.00 OMGT 0.50 OMGF 1.00
ERRCG 1.0E-2 ERRM 1.0E-5 IMON 81 JMON I0 MONU

:RESTART
gRID NX 81 NY 41 AXlSYM READXY

BOUND
IST 1 IEND 1 JST 1 JEND 41 INLET
IST 1 IEND 81 JST 41 JEND 41 WALL U 0. V 0.0

IST ! !END 81 JST 1 JEND 1 S YMMETRY
IST 81 IEND 81 JST 1 JEND 41 OUTLET

TURBULENT TKIN 3.072 TEIN i0000.
PROPERTY VISCOS 9.05E-5

PSTAG 20240946.90 TSTAG 3637. GAMMA 1.2 GMW 10.18
SOLV U v P.. TEMP TK TE
RUN DT I.E-5 DTMIN I.OE-5 DTMAX I.E-2 CFLN 4.00 NSTEP I00

NPR1 1 NPR2 I00 NEX 18 ; LPFAC ; LPGEO

ENDJOB

CONIIX_ OF MACH NL%_ER

=l

>.

Figure A.2 Sample SSME Nozzle Flow Inputs and Results --- Turbulent,
Non-reacting •
ISP = 513.06 sec.
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SAMPLE CASE 3

CONTROL COMPRES NCRT 2 OMGM 1 NCGM 50

OMGD 1.0 PHI -i.0 OMGPHI 0.00 OMGT 0.50 OMGF 1.00
ERRCG 1.0E-2 ERRM 1.0E-5 IMON 81 JMON 10 MONU

:RESTART
3RID NX 81 N¥ 41 AXISYM READXY
BOUND

IST 1 IEND 1 JST 1 JEND 41 INLET

IST 1 IEND "'81 JST 41 JEND 41 WALL U 0 . V 0 .0
IST 1 IEND 81 JST 1 JEND 1 SYMMETRY
IST 81 IEND 81 JST 1 3END 41

._JRBULENT TKIN 3.072 TEIN i0000.

._EACTION

EQLM
PROPERTY VISCOS 9.05E-5

PSTAG 20240946.90 TSTAG 3637.
SOLV U V P _ TK TE

RUN DT I.E-5 DTMIN 1.0E-5 DTMAX I.E-2

ENDJOB

OUTLET

NPRI 1 NPR2 I00

GAMMA 1.2 GMW -i_..

CFLN 4.00 NSTEP_I00 _

NEX 18 ; LPFAC ; LPGEO

A

>-

-0357 0843 1.643 284S -_-.-_

Figure A. 3 Sample SSME Nozzle Flow Inputs and Results --- T_ent-,

Equilibrium reaction.

ISP -- 459.86 sec. OR|GINAL _,_,GE 15
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SAMPLE INPUT FILE

"chem. in"

specis # ns, elements # ne, frosen # nf
6 2 2

chemical element
OH

chemical species

02 H2 H20 HO 0 H ;
elements conservation b0
3.,8.
frosen ?

F
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SAMPLE CASE 4

CONTROL COMPRES NCRT 3 OMGM i NCGM 50
OMGD 1.0 PHI -i.0 OMGPHI 0.00 OMGT 0.50 OMGF 1.00

ERRCG 1.0E-2 ERRM 5.0E-6 IMON 81 JMON i0 MONU

;RESTART
GRID NX 81 NY 41 AXISYM READXY

BOUND
IST 1 IEND 1 JST 1 JEND 41 INLET
YI{2 0.143 YO2 0.857 YHO 0. YH20 0.
IST 1 IEND 81 JST 41 JEND 41 WALL U 0.0 V 0.0

IST 1 IEND 8'1 JST 1 JEND 1 SYMMETRY
IST 81 IEND 81 JST 1 JEND 41 OUTLET

TURBULENT TKIN 3.072 TEIN I0000.
REACTION

FINIR LCHEM 1 INISPE
YH2 0.143 YO2 0.857 YHO O. YH20 O.

PROPERTY VISCOS 9 .05E-5
PSTAG 20240946.90 TSTAG 3637.

SOLV U V P _ TK TE
RUN DT I.E-5 DTMIN 1.0E-5 DTMAX 1.E-2

ENDJOB

NPRI 1 NPR2 i00

GAMMA 1.2 GMW 10.18

CFLN 4.00 NSTEP 100

NEX 18 ; LPFAC ; LPGEO

CDNT0t_ 0F MACH NUMBER

>-

x(M)

_OF_

X(M)

Figure A.4 Sample SSME Nozzle Flow Inpute and Reeults --- Turbulent,

2-Step Kinetics. ORIGl_q._L _>_"_ _

ISP = 442.01 sec. 67 OF POOR QUALITY



SAMPLE CASE 5

_3NTROL COMPRES NCRT _ OMGM 1 NCGM 50

OMGD 1.0 PHI -i.0 OMGPHI 0.00 OMGT 0.50 OMGF 1.00

ERRCG 1.0E-2 ERRM 1.0E-5 IMON 81 JMON i0 MONU

:RESTART

3RID NX 81 NY 41 AXISYM RY.ADXY

BOUND

IST I IEND I JST 1 JEND 41 INLET

YH2 0.143 Y02 0.857 YO 0. YH 0. YHO 0. YH20 0.

IST 1 I_2_D 81 JST 41 J_D 41 WA/_L U 0. V 0.0 ;
IST 1 II_D 81 JST 1 JEND 1 SY_Y

IST 81 IEND 81 JST 1 JEND 41 OUTI_

TURBULENT TKIN 3.072 TEIN i0000.

REACTION

FINIR LCHEM 2 INISPE

¥H2 0.143 YO2 0.857 YO 0. YH 0. ¥HO 0.0 YH20 0.0

PROPERTY VISCOS 9.05E-5

PSTAG 20240946.90 TSTAG 3637. GAMMA 1.2 GMW 10.18

SOLV U V P TEMP TK TE

RUN DT I.E-5 DTMIN 1.0E-5 DTMAX I.E-2 CFLN 4.00 NSTEP i00

NPRI 1 NPR2 I00 NEX 18 ; LPFAC ; LPGEO

ENDJOB

_CF _U_H _

_M3

x(w)

CU_UjR 0F Tn4F_t_L_

x(M)

Figure A.5 Sample SSME Nozzle Flow Inputs and Results .... Tttrbulent,

8-Step Kinetics.

ISP = 452.78 sec.
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G.P. Cheo_

G

GRID

S,_,_ Dm: Oaob_ 1NO (Snsep_ee_ Nun

Table A.1. Updated features in the HAST code. (Dec., 1992)
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